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Abstract
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score models, the filtering method is simple and practical to implement. We estab-
lish the asymptotic properties of the maximum likelihood estimator and show that
the instrumental-variable score-driven filter converges to the unique unknown causal
path of the true parameter. We further analyze the finite sample properties of the
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1 Introduction

Establishing causal relationships between relevant variables is fundamental in economics
and other fields of science. For example, causal inference is key for understanding the
effects of fiscal and monetary policies in macroeconomics. It is however well known that
standard predictive methods used in the econometric, statistical and machine learning lit-
erature will typically fail to uncover causal relationships when dealing with observational
data, due to regressor endogeneity. As a result, considerable effort has been made to
develop new and effective causal inference techniques. This effort, carried over the last
few decades, as been recently recognized by the 2021 Nobel Memorial Prize in Economic
Sciences awarded to Joshua Angrist and Guido Imbens. In particular, a range of solutions
have been proposed in the literature for causal inference of observational data that typi-
cally suffers from endogeneity issues. Important examples include the use of instrumental
variables (IV) (Angrist, Imbens, & Rubin, 1996), difference in differences (Ashenfelter
& Card, 1985; Bertrand, Duflo, & Mullainathan, 2004) and regression discontinuity de-
sign (Thistlethwaite & Campbell, 1960) among others (e.g. synthetic control (Abadie &
Gardeazabal, 2003), propensity score matching (Rosenbaum & Rubin, 1983)).

When dealing with time-series or panel data, it is important to note that causal in-
ference methods generally attempt to uncover causal relationships that are assumed to be
time-invariant. They are not designed to keep track of time-varying causal relationships,
and do not focus on modeling that time-variation or producing dynamic forecasts of fu-
ture cause-and-effect interactions. This can be, of course, a shortcoming in a number of
applications. Much like in other scientific domains, in economics causal relationships can
change over time both qualitatively and quantitatively. For example, the effectiveness of
different fiscal and monetary policies may change substantially over time as they depend
on the historical political, social, economic, technological and institutional context. In
many practical applications, parameters can thus be time-varying and the need may arise
to filter such parameters in order to track the evolution of the true causal effect and po-
tentially forecast it. In macroeconomics for example, several studies find that the causal
effect of monetary policy actions changed over time (Boivin & Giannoni, 2006). Attempts
to identify these time-varying effects of monetary policy on macroeconomic variables have
been made by Koop, Leon-Gonzalez, and Strachan (2009) and Korobilis (2013) among
others.

In this paper we propose a novel score-driven filtering method (Creal, Koopman, &
Lucas, 2013; Harvey, 2013) featuring instrumental variables to estimate the time-varying
parameter in a regression model, with observational data, which may suffer from endo-
geneity. We model the endogeneity with a control function approach (e.g. Heckman and
Robb (1985); Wooldridge (2015)) if suitable instruments are available. Similar to IV
methods in general, our proposed method can potentially handle endogeneity originating
from multiple causes. Important ones include: (i) simultaneity, which emerges when two
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variables are contemporaneously causally linked to each other (Haavelmo, 1943; Kennan,
1989); (ii) omitted variables, which occurs when regressors are correlated with other rel-
evant regressors that are omitted from the regression model (Wooldridge, 2009); and (iii)
measurement errors in relevant regressors (Bound, Brown, & Mathiowetz, 2001). Each of
these conditions, and several others, result in endogeneity which renders predictive models
unsuitable as tools for distilling causal effects (Haavelmo, 1943; Wooldridge, 2002).

Alternative regression models with time-varying parameters and endogenous regressors
have been proposed in the literature. Kim (2006) and Kim and Kim (2011) propose
both one-step and two-step estimation procedures of the Kalman Filter with a similar
control function approach to handle endogeneity. Another approach that has recently been
proposed by Giraitis, Kapetanios, and Marcellino (2021) uses a kernel based technique to
estimate a time-varying IV estimator. Inoue, Rossi, and Wang (2022) propose a time-
varying IV framework for Local Projections, based on the work of Müller and Petalas
(2010), who show that for nonlinear non-Gaussian parameter-driven models with moderate
time-variation, the sample information can be approximated by a linear Gaussian model
that contains the scores of the likelihood as observations. This fact further motivates
our use of score functions in the filter that estimates the time-varying parameter. The
difference in performance between the score-driven filters and the method proposed by
Müller and Petalas (2010) has been analysed in Calvori, Creal, Koopman, and Lucas
(2017) in the context of a time-varying parameter test.

Our score-driven filter stands out in its simplicity of implementation and ability to pro-
duce robust and reliable path estimates in nonlinear non-Gaussian settings. Compared to
parameter-driven models, such as the Kalman filter, observation-driven models like score-
driven models are easier to implement and computationally less demanding, especially in
nonlinear non-Gaussian parameter settings (Koopman, Lucas, & Scharth, 2016). Com-
pared to non-parametric kernel methods, our parametric score-driven approach stands out
in small-sample problems and forecasting exercises. Naturally, non-parametric methods
can have advantages in terms of flexibility, but they will also require a choice of hyperpa-
rameters such as kernel related bandwidths.

Our filter fits more generally in the class of (quasi) score driven filters, as introduced by
Creal et al. (2013), Harvey (2013) and Blasques, Francq, and Laurent (2023). The score
driven method has been shown to have optimality properties over other methods such
as the Kalman Filter. In particular, the updating scheme for a time-varying parameter
is optimal in the information theoretic sense if and only if it contains the score of the
likelihood; Blasques, Koopman, and Lucas (2015), Blasques, Koopman, and Lucas (2018),
Blasques, Lucas, and van Vlodrop (2021), Beutner, Lin, and Lucas (2023). A similar
optimality result holds for an analogous time-varying parameter approach in the context of
the general method of moments (GMM) framework (Creal, Koopman, Lucas, & Zamojski,
2018). In the context of time-varying regression models, the score approach has been used
by Blasques, Koopman, and Lucas (2020), Gorgi, Koopman, and Schaumburg (2017), in
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which autoregressive frameworks are considered. The time-varying parameter regression
model with a score driven update is investigated by Thiele and Harvey (2013), who model
time-varying correlations and by Blasques, Francq, and Laurent (2022), who introduce
a time-varying beta model with GARCH dynamics for financial data. Notably however,
none of these papers address the case of regressor endogeneity.

The rest of the paper is structured as follows. In Section 2 we describe the model and
introduce the Instrumental Variables Score filter (IV-score). In Section 3 we analyse the
stochastic properties of the filter. In Section 4 we show consistency of the two-step Max-
imum Likelihood Estimator (MLE) and show that the filter with estimated parameters
converges to the unique path of the true unknown causal parameter when endogeneity is
present. In a Monte Carlo simulation study in Section 5 we analyze the finite sample prop-
erties for various types and levels of endogeneity and we observe that the filter manages
to uncover the true path even in non-stationary settings. In Section 6 we demonstrate the
empirical relevance by applying the filter to estimate the excess sensitivity of consump-
tion to income in the United States, as well as providing time-varying estimates of price
elasticity of demand at the Fulton fish market.

2 Causal score-driven filtering model

Let {yt}t∈Z be a time series generated according to

yt = βtxt + εt, (1)

where {xt}t∈Z is a stochastic regressor, {βt}t∈Z is a time-varying parameter, and {εt}t∈Z
is a mean-zero identically distributed error term with density pε, indexed by a static
parameter vector λ. We assume the regressors are endogenous, hence the usual exogeneity
condition fails E(εt|xt) 6= 0. The specific cause of endogeneity can be left unspecified,
but it could emerge from the usual culprits, ranging from simultaneity between yt and xt,
omitted variables which are correlated with the regressor xt, a measurement error in the
regressor xt, functional form misspecification, etc.

In the (quasi) score-driven approach, the filter for the time-varying parameter βt is
given by

βt+1 = ω + αst + γβt, (2)

for fixed unknown parameters ω, α, γ, and where st is the scaled score,

st = St · ∇t ∇t =
∂ ln py(yt|xt, βt;λ)

∂βt
, (3)

with St being a scaling matrix and py(yt|βt, xt;λ) = pε(ε̃t;λ), where ε̃t = yt − βtxt is
the prediction error. For example, for normally distributed homoskedastic disturbances
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pε(εt;λ) = f(εt;σ
2
ε), where f(·) is the density function of a mean-zero Gaussian distribu-

tion with variance σ2
ε , we get ∇t = xt(yt − βtxt)σ−2

ε , giving rise to the filtering equation

βt+1 = ω + ασ−2
ε xt(yt − βtxt) + γβt. (4)

Intuitively, this specification of the score ensures that the parameter will be updated to
reduce the latest prediction error. In this way the parameter stays up-to-date and provides
the closest model fit based on the most recent observations. Clearly, other distributions
for the error term can be chosen and the parameter update will naturally be adjusted.

When regressors are exogenous, the static parameters of the filtering equation in (2),
collected in the vector θ = (ω, α, γ, σ2

ε)
′, can be consistently estimated by maximum

likelihood, and ultimately, a time-varying βt can be adequately filtered; see e.g. Blasques,
Gorgi, Koopman, and Wintenberger (2018) for filter convergence results. This means
essentially that the filtered parameter β̂t(θ̂T ) initialized at some value β̂1 in a correctly
specified model, will converge to its true unobserved value βt as both t and T diverge to
infinity,

|β̂t(θ̂T , β̂1)− βt|
p−→ 0 as (t, T )→∞. (5)

Taking t to infinity is required so that the effect of the (almost surely) incorrect initializa-
tion of the filter at β̂1 vanishes. This is ensured by establishing the so-called invertibility
of the filter, which requires the filter to have fading memory. Taking the sample size T to
infinity ensures that the MLE of the static parameters θ̂T converges to θ0.

Unfortunately, this same score filtering technique will fail to uncover the causal βt
when the regressor xt is endogenous. Indeed, when the exogeneity condition E[εt|xt] 6= 0
fails due to simultaneity, omitted variables, or other factors, the filter convergence in (5)
will no longer hold. In order to handle the problem of regressor endogeneity, we take
a two-step instrumental variable approach. This method requires the existence of valid
instruments {zt}t∈Z, that are used to estimate the first stage regression

xt = πzt + ut ut
i.i.d∼ N(0, σ2

u), (6)

where E[ut|zt] = 0 and the true parameter π0 6= 0. In a second step, we take a control
function (CF) approach to correct for endogeneity. Like in a static model (see Wooldridge,
2015), the correlation between the regressor and error term in (1) can be modeled as
εt = τut + ηt, where we let ηt is an identically and independently distributed (i.i.d.)
innovation regardless of the type of endogeneity. As such, the relation between yt and xt
is given by yt = βtxt + τut + ηt. Analogous to the static control function approach, we
add the first stage fitted residuals to the structural equation to replace the unknown first
stage errors. As a result, after obtaining the residuals ût = xt − π̂T1zt from the first-stage
regression, where π̂T1 denotes the estimate of π. To be explicit about the fact that the
first stage estimate is carried over to the second stage, we denote the sample sizes of both
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stages T1 and T2 respectively. The second stage regression model is given by

yt = βtxt + τ ût + ηt. (7)

Further, the Gaussian causal IV-score filtering equation that assumes ηt
i.i.d∼ N(0, σ2),

takes the form

βt+1 = ω + ασ−2xt(yt − βtxt − τ(xt − π̂T1zt)) + γβt (8)

where π̂T has been estimated ex ante through equation (6), and we collect the static
parameters in θ = (ω, α, γ, τ, σ2)′.

This control function approach bears similarity to Terza, Basu, and Rathouz (2008),
who highlight the importance of using a CF in nonlinear linear-index models to avoid
inconsistent estimation. Note that simply replacing the regressors with the fitted values
of the first stage in the filter in (4), a more common 2SLS approach, will not work. In
time-invariant models, the knowledge that the prediction error is zero on average and
that the loss function should be minimized is enough. But in this setting, next to its
direct role in loss function minimization, the prediction error also drives the filter, hence
a good estimate for it is crucial. It is necessary therefore to control for the movements
in the regressors as much as possible, by adding the first stage residuals to the structural
equation. Not doing that will result in the prediction error, and along with it the filtered
path, being governed by unobserved movements in xt. In the case of a highly relevant but
omitted variable for example, the prediction error and filter will then mimic the omitted
variable rather than distill the causal effect.

We note that all of the subsequent results extend easily to the case in which models
defined in (1), (6) and (7) have an intercept a ∈ R so that yt = a+βtxt+ηt. For simplicity,
we let a = 0 and assume that the data is demeaned. We note that the current model
can also be easily extended to allow for a time-varying parameter πt, by constructing
a multivariate filter similar to Blasques, Francq, and Laurent (2022). For theoretical
simplicity we continue using a static π as we focus on the causal time-varying parameter
of interest βt, and leave this extension for future research.

3 Stochastic Properties of the Filter

We collect all data at time t in the vector Yt := (yt, xt, zt)
′. We denote the sample history

of this vector by Y 1:t := {Y1, . . . , Yt−1, Yt}, and the entire history of this vector stretching
to the infinite past by Y t := {. . . , Yt−1, Yt}. We start from the filter definition in (2)
to allow for a flexible framework that includes more general models with different error
distributions and model specifications, among others. We denote the filtered sequence,
that depends on the sample data, by {β̂t(Y 1:t−1,θ, π, β̂1)}t∈N, with short hand β̂t(θ, π, β̂1)
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also sometimes denoted by β̂t. The filtered sequence initialized in the infinite past is
denoted by {β̃t(Y t−1,θ, π)}t∈Z or simply β̃t := β̃t(θ, π). If the model is correctly specified
and both θ0 and π0 are the true parameters, then βot := β̃t(θ0, π0) is the true stochastic
time-varying parameter. We let λ contain all model and density specific parameters (in
equation (8) λ = (τ, σ2)′) and let θ = (ω, α, γ,λ) and k = dim(θ). For a random variable

x(θ) possibly depending on θ ∈ Θ, we further let ‖x(·)‖Θn := (E supθ∈Θ |x(θ)|n)1/n and
‖x(·)‖Θ := supθ∈Θ |x(θ)|. Finally, we define the stochastic function

Λ∗t (θ,θ
∗, π) := sup

β∗∈Fθ∗
|γ + α∂s(β, Yt, π;θ)/∂β|β=β∗ | (9)

for some π ∈ R. Then Λt(θ, π) := Λ∗t (θ,θ, π) is the special case where θ∗ = θ.

Invertibility

Lemma 1 gives general conditions for invertibility of the filter. Invertibility ensures that
the effect of the initialization of the filter vanishes in the limit, meaning that the filtered
sequence converges to its unique limit for any given initialization β̂1. Lemma 1 further
establishes stationarity and ergodicity (SE) of the limiting sequence, which will be used
when deriving the asymptotic properties of the maximum likelihood estimator. Note that
this result holds irrespective of whether the model is correctly specified.

Lemma 1 (Invertibility). Let Θ ⊂ Rk be compact, and let the elements in {Yt}t∈Z be SE
sequences. Let π̂T1 ∈ R and assume there exists some β̂1 ∈ F such that

(i) E log+ supθ∈Θ |s(β̂1, Yt, π̂T1 ;θ)| <∞

(ii) E log supθ∈Θ Λt(θ, π̂T1) < 0

Then the sequence {β̂t}t∈N converges exponentially almost surely to a unique limit SE
sequence {β̃t}t∈Z uniformly on Θ , i.e. ‖β̂t(θ, π̂T1 , β̂1)− β̃t(θ, π̂T1)‖Θ

e.a.s−−−→ 0 as t→∞.

In Corollary 1 we formulate the invertibility conditions for the specific case of the
Gaussian IV-score filter in equation (8). The conditions for the score filter with exogenous
regressors in equation (4) follow with τ = 0. The invertibility conditions (i) and (ii) are
trivially satisfied for the Gaussian IV-score filter.

Corollary 1 (Invertibility for Gaussian IV-score). Let {Yt}t∈Z be a SE sequence and let
π̂T1 be the first stage estimate of π0. Let θ = (ω, α, γ, τ, σ2)′ ∈ Θ where Θ ⊂ R5 is compact
and assume there exists some β̂1 ∈ F such that

(i) E log+ supθ∈Θ |σ−2xt(yt − β̂1xt − τ(xt − π̂T1zt))| <∞

7



(ii) E log supθ∈Θ |γ − ασ−2x2
t | < 0

Then the sequence {β̂t}t∈N produced by the filtering equation (8) converges e.a.s. to a
unique limit SE sequence {β̃t}t∈Z uniformly on Θ , i.e. ‖β̂t(θ, π̂T1 , β̂1)− β̃t(θ, π̂T1)‖Θ

e.a.s−−−→
0 as t→∞.

Bounded moments

As we shall see in Section 4, beyond filter invertibility, the MLE consistency proof that
we establish will also require that the limit filter has bounded moments when evaluated
at the true parameter (π0,θ0) ∈ R×Θ. According to Lemma 1, the limit filter evaluated
at (π0,θ0), satisfying the recurrence βt+1 = ω0 +α0σ

−2
0 xt(yt−βtxt− τ0(xt−π0zt)) +γ0βt,

converges to the same unique solution

βt+1 = ω0 + α0σ
−2
0 xtηt + γ0βt. (10)

This is a stochastic recurrence equation of the type βt+1 = φ0(xt, ηt, βt) with derivative
given by ∂φ0(xt, ηt, βt)/∂β = γ0 where φ0 is a function defined by the parameter vector
(π0,θ0). Lemma 2 and Corollary 2 establish bounded moments for this limit process.

Lemma 2 (Limit filter moments). Let {Yt}t∈Z be a SE sequence. Suppose ∃nβ >
0 such that ‖φ0(xt, ηt, βt)‖nβ < ∞, and sup(β∗,Y )∈F×Y |∂φ0(xt, ηt, βt)/∂β| < 1. Then

‖β̃t(θ0, π0)‖nβ <∞.

Corollary 2 (Limit filter moments for Gaussian IV-score). Let {Yt}t∈Z be a SE sequence.

Suppose ∃nβ > 0 such that (E|xtηt|nβ )1/nβ < ∞ and |γ0| < 1. Then the limit sequence
‖β̃t(θ0, π0)‖nβ <∞.

4 Asymptotic Properties of the Maximum Likelihood Esti-
mator

An advantage of the score-driven time-varying parameter models is that the static param-
eter θ0 ∈ Θ can be estimated by a straight forward maximum likelihood (ML) procedure.
We define the second stage ML estimator as

θ̂T2(π) ∈ arg max
θ∈Θ

`T2(θ, π, β̂1) (11)

where

`T2(θ, π, β̂1) =
1

T2

T2∑
t=1

`t(θ, π, β̂t(θ, π, β̂1)) (12)

8



and `t(θ, π, β̂t(θ, π, β̂1) := log py(yt|β̂t(θ, π, β̂1), xt, zt,θ, π). Furthermore, define `0(θ, π0) :=
`t(θ, π0, β̃t(θ, π0)) and `∞(θ, π0) = E[`0(θ, π0)]. To establish consistency in similar spirit
to Blasques, Gorgi, et al. (2018), assume that the following conditions hold:

(C1) The DGP which satisfies equations (6) to (8) with θ = θ0 ∈ Θ admits a stationary
solution and that {(xt, zt)}t∈Z is a SE sequence.

(C2) E|`0(θ0, π0)| <∞

(C3) For any θ ∈ Θ, `0(θ0, π0) = `0(θ, π0) if and only if θ = θ0

(C4) The invertibility conditions (i) and (ii) of Lemma 1 are satisfied for the compact set
Θ ⊂ Rk

(C5) The sequences

{∥∥∥∥ ∂`t(θ,π̂T1
,β)

∂β

∣∣∣
β=β̃∗t (θ,π)

∥∥∥∥
Θ

}
t∈Z

and

{∥∥∥∥∥ ∂`t(θ,π,β̃t(θ,π0))
∂π

∣∣∣
π=π∗T1

∥∥∥∥∥
Θ

}
t∈Z

are SE, where β̃∗t (θ, π) is a point between β̃t(θ, π̂T1) and β̃t(θ, π0) and π∗T1
is a point

between π̂T1 and π0.

(C6) E‖`0(θ, π0) ∨ c‖Θ <∞ for some c ∈ R such that c < `∞(θ0, π0)

(C7) π̂T1

p−→ π0 as T1 →∞

As noted in Blasques, Gorgi, et al. (2018), we obtain strong consistency following Wald
(1949). Theorem 1 states that the maximum likelihood estimator evaluated at some
initialization β̂1 and at the first stage estimate π̂T is consistent for the true unknown
parameter. Corollary 3 provides the same consistency result but applied to the special
case of our Gaussian IV-score model.

Theorem 1 (Consistency). Let the conditions (C1)-(C7) hold. Then the maximum like-
lihood estimator is consistent

θ̂T2(π̂T1 , β̂1)
p−→ θ0 T1, T2 →∞, (13)

for any initialization β̂1 ∈ F .

Corollary 3 (Consistency MLE of Gaussian IV-Score). Let the process {yt}t∈Z be gen-
erated by the model in equations equations (6) to (8) with θ = θ0 ∈ Θ such that |γ0| < 1
and σ2

0 > 0, and let the sequences {(xt, zt)}t∈Z be SE. Furthermore let Θ be compact such
that E log|γ − ασ−2x2

t | < 0 and σ > 0 ∀θ ∈ Θ. Then the maximum likelihood estimator
θ̂T2(π̂T1 , β̂1) with any initialization β̂1 ∈ F is consistent.
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Building on the consistency of the MLE, we can also provide a convergence result of the
causal time-varying parameter of interest. Proposition 1 assures that the filter converges
to the true time-varying parameter, and is a direct result of the previously established
invertibility of the filter and consistency of the MLE. Strong consistency in part (b) holds
whenever the limit process {β̃t}t∈Z has a log plus bounded moment. Although this is
a rather mild condition, that will most likely hold due to the stationarity of this limit
process, but cannot always be confirmed theoretically1.

Proposition 1 (Path Convergence). Let (C1) and (C4) hold and θ̂T2

p−→ θ0. Then the
IV-score filter is consistent for the true unobserved causal time-varying parameter {βot }t∈Z
when evaluated at π̂T1,

|β̂t(θ̂T2 , π̂T1 , β̂1)− βot |
p−→ 0 as T2 ≥ T1 ≥ t→∞ (14)

for any initialization β̂1 ∈ F .

5 Simulation Study

In the following simulation study we investigate the performance of the new IV-score filter
compared to a regular score filter, as specified in (8) and (4) respectively, for a time-varying
parameter regression model in which the regressor is endogenous. In terms of endogeneity,
we consider the general formulation that encompasses all types of endogeneity, among
which omitted variables, measurement errors and simultaneity.

We consider the following data generating process (DGP1), in which the true time-
varying parameter βt as well as the instrument zt, are generated by stationary AR(1)
processes for given parameters τ, π, ση, σu, σβ, σz.

yt = βtxt + τut + ηt

xt = πzt + ut

βt = 0.1 + 0.95βt−1 + ξt

zt = 0.2zt−1 + ζt

ηt ∼ N(0, σ2
η),

ut ∼ N(0, σ2
u),

ξt ∼ N(0, σ2
β),

ζt ∼ N(0, σ2
z).

We generate a path of T1 = T2 = T = 1000 observations for {βt}Tt=1 once, and subsequently
draw the data M = 1000 times, estimate both filters and evaluate them by taking the

1Note that in Lemma 2 we established bounded moments for the limit filter when evaluated at the
true parameter (τ0,θ0), which conveniently changes the prediction error into exactly ηt. Proposition 1 (b)
requires a log plus bounded moment uniformly over θ, which for the Gaussian IV-score filter for example,
results in the condition E sup(β∗,Y,θ)∈F×Y×Θ|γ − ασ−2x2

t | < 1. This condition is not evident to hold
without further assumptions on xt, since the supremum is taken over the data.
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average mean squared error (MSE) over the whole path. With the parameters τ, π, σu
we can increase and decrease the level of endogeneity and determine the strength of the
instrument, while we fix σ2

η = 1, σ2
β = 0.1, σ2

z = (1− 0.22). The true path for βt is chosen
with a high persistency parameter, as real-life processes most likely evolve slowly over
time.

Uncovering the True Causal Parameter

In Figure 1 and Table 1 we present the results for DGP 1 for the case where τ = −4, π = 1
and σu = 5. This is a configuration of the parameters for which the bias is substantial and
the illustration is clear. The plots of the paths are constructed by taking medians at each
point t = 1, . . . , T over all simulations. In the figures we include the true path (blue), the
static least squares estimator (OLS, red) and IV (green) estimators as estimated on the
whole sample, and the median IV-score and score (orange) paths over all simulations.

Figure 1: Estimated paths of the causal parameter with DGP 1 where βt follows an AR(1).

ω̂ α̂ γ̂ β̂0 σ̂2
η τ̂ b0 b1 MSE

OLS 0.129 -1.635 12.109
IV -3.740 0.022 1.762 0.974
Score -0.062 0.353 0.952 -3.289 16.992 11.663
IV-score 0.128 0.121 0.946 0.409 2.448 -4.263 0.349

Table 1: Maximum Likelihood Estimates and MSE (DGP 1).

Comparing the MSEs of the filtered paths relative to the true causal paths (Table
1) it becomes clear that the IV-score filter outperforms the score filter without difficulty,
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Figure 2: Scatter plot of IV-score and score filtered values vs. true βt (DGP 1).

highlighting that taking endogeneity into account is crucial. The endogeneity bias is visible
in Figure 1 through the large gap between the static OLS and IV estimators. The OLS
estimator suggests a consistent negative relation, while much of the causal parameter is
actually positive, something that is correctly picked up on by the static IV estimator. This
bias in the OLS estimator is carried over to the score-driven model in the time-varying
case. In contrast to this regular score-driven model, the IV-score filter captures the true
causal relation well.

At a first glance it seems that the aforementioned static OLS-IV bias shift is the only
difference between the score and IV-score filtered paths. But not only is it shifted, the
score filter does not follow the same dynamics as the true parameter does. This is clearly
shown in the scatter plots of the true parameter versus the filtered parameters displayed in
Figure 2. The IV-score filter moves along with the true parameter in the right directions
(high when high), while the score filter produces a much flatter relation. Note that for none
of the (subsequent) DGPs we simulate the true time-varying parameter to follow our IV-
score specification, but let the process evolve independently. Another crucial observation
is that this DGP is parameter-driven, while our (IV)score method is observation-driven.
This shows that misspecification in this sense does not affect the performance of our
observation-driven approach. For more discussion on this comparison, see Koopman et al.
(2016).

Robustness Check

In this section we investigate the robustness of the method. In particular, we explore
whether the method breaks down with (i) a non-stationary causal parameter (DGP 2 &
3), (ii) when the instrument is not fully exogenous (DGP 4), (iii) when the observations
have high variance (DGP 5) and (iv) when the data contains outliers (DGP 6). The DGP’s
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in each of these four scenarios are based on DGP 1 with the following adaptations.

DGP 2 βt =

{
−1 t ≤ bT/2c
1 t > bT/2c

DGP 3 βt = 1 + βt−1 + ξt
DGP 4 zt = 0.2zt−1 + 0.2ut + ζt
DGP 5 σ2

η = 25

DGP 6 yt = βtxt + τut + (1− It)ηt + ItStφt
It ∼ Bernoulli(0.01), St ∼ Uniform{−1, 1}, φt ∼ N(50, 52)

Non-stationary Causal Parameter
Figure 6 in Appendix B shows the filtered path for a midway break in βt generated by
DGP 2, jumping from a negative value to positive in the middle of the sample. Even
in this non-stationary setting, the IV-score filter manages to capture the change in the
parameter very closely, with only little variation around the true line. The score filter
on the other hand does show some indication of a break in levels, but remains negative
throughout the whole sample due to the bias. When we generate a more severe case of
non-stationarity by letting βt follow a random walk (DGP 3 and Figure 7), we still find
that the filter performs considerably well.

Contaminated Instrument
When the instrument is not exogenous but also correlated with the error term ut (DGP
4), the IV-score filter breaks down as expected. In Figure 8 the paths are both visibly
biased, although the IV-score filter still benefits from some exogenous movements in zt to
get closer the the true path. This figure clearly illustrates how the performance depends
on how the static IV estimator with the same endogeneous instruments relates to the true
path. The lower the bias of IV, the better the performance of the related IV-score filter.

Large Error Variance
When the variance of the error term is increased to σ2

η = 25, the result is a more flattened
filter as visible in Figure 9. This is to be expected, as the prediction error in the score will
have larger outlying values and the corresponding estimate α̂σ̂−2

η will adjust accordingly
making the overall filter less responsive to any changes in the score, also those caused by
the true parameter. The result is a much less responsive filter that therefore mimics the
true time-varying parameter more poorly.

Outliers
Outliers in the data might influence the filtered path, although it depends on their size
and frequency. For example, simulating the errors from a fat tailed t-distribution with
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ν = 3 degrees of freedom, will not generate any sudden jumps in the filtered path, as
the parameter α pre-multiplying the score will be adjusted towards zero. Therefore we
examine with DGP 6 a situation in which there are only a few extreme errors, taking
values around 50, in contrast to rest that are standard normally distributed. Although
this leads to extreme values of the data, the outliers only slightly affect the filtered path, as
the filter is somewhat flattened out by a smaller value of α̂σ̂−2

η . In Figure 10 we do observe
some peaks where the outliers appear (gray lines), but it still provides an acceptable path
given such extreme outliers.

6 Empirical Applications

Excess Sensitivity of Consumption

We now provide an illustration of our score-driven filter for endogenous regressors, by
estimating time-varying excess sensitivity of consumption to income. Originally, Hall
(1978) hypothesized that consumption (Ct) was a random walk, while later Campbell and
Mankiw (1989) proposed an extended model by assuming that a fraction of the population
(λ) consumes out of their current income (Yt). As a result, a part of the changes in income
drive changes in consumption, expressed as

∆Ct = α+ λ∆Yt + εt.

Due to the potential endogeneity of income, Campbell and Mankiw (1989) suggested
using lagged variables as instruments. It was only recently, that Bhatt, Kundan Kishor,
and Marfatia (2020) highlighted that although these instruments have been argued to be
exogenous, they are in fact weak instruments. Instead, these authors proposed to use the
lagged 1-step-ahead Greenbook forecasts of changes in real disposable income, as these
are simultaneously highly correlated with the real disposable income at time t (as opposed
to the previously used instruments), and exogenous due to the forecasting nature of the
variable, thus eliminating any undesirable contemporaneous effects.

The parameter of interest is λ, which measures the causal impact that changes in
income have over changes in aggregate consumption. By sub-sample estimation (1978-
1999 and 2000-2010), Bhatt et al. (2020) find that λ is much smaller in the most recent
sub-sample than in the sample based on the years before 2000, which motivates their choice
for taking a time-varying approach. Similarly, we estimate the time-varying parameter
using our score-driven causal filter, while adding a lag of ∆Ct with a fixed parameter2

to capture the effect of changes in income on consumption growth. The structural model

2Bhatt et al. (2020) also add ∆Ct−1 to their model, however with a time-varying parameter φt. Such
a multivariate filter is also possible in our framework, but for simplicity and brevity we take a constant
parameter as we wish to merely illustrate the use of our filter for the parameter of interest λt.
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equation we estimate is

∆Ct = α+ λt∆Yt + φ∆Ct−1 + εt, (15)

where we use the Greenbook forecasts (Y GB
t ) as instruments, and the model and filtering

equation are analogous to equations (6), (7), (8).

Figure 3 (left) shows the growth rates of aggregate consumption, national income, as
well as the GreenBook forecasts. Similar to Bhatt et al. (2020), we take quarterly obser-
vations of real consumption expenditures per capita on non-durable goods and services
and real per capita disposable income from 1978-2010 in the U.S., as well as the the one
quarter forecast of real disposable income from the Greenbook reports3.

Figure 3: Data and filtered path of excess sensitivity parameter λt

In the right panel of Figure 3 we plot the static OLS and IV estimators and the
resulting score-driven filtered paths of λt, accounting for endogeneity and not (IV-score
and score respectively). The area shaded gray are the the 90% confidence bands for the
IV-score filter, that are estimated using a bootstrap procedure accounting for parameter
uncertainty, inspired by Pascual, Romo, and Ruiz (2006) and modified for our two-step
score-driven model with B = 500 replications.

From the estimated filter paths we observe that sensitivity of consumption to income
seems to have steadily decreased during the 80s. Over the next decade the sensitivity
increased somewhat until the sudden drop in the wake of the 2001 crisis. There seems to
have been speedy recovery however, until the plunge due to the 2008 financial crisis. The
confidence bands of the IV-score filter suggest that there were several periods in which
there was a significant effect, particularly when the filter takes on its extreme values.
Moreover, the bands are wider during unpredictable times, as seen from the changing

3We are grateful to the authors Bhatt et al. (2020) for providing us with the data. For a detailed
description of the source and type of data, see Bhatt et al. (2020).
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distance between the lower and upper bound over time. This is most prominent during
the global financial crisis, in which the bands even stretch in opposite directions, capturing
the additional uncertainty of this event. The reason is an unusually large deviation in ∆Yt,
which in our filter specification is multiplied with the prediction error, resulting in wider
confidence bands that reflect the increased uncertainty in volatile periods.

An important observation is that endogeneity does not seem to be notably present as
the static OLS and IV are not vastly different. This is indeed confirmed by a Hausman
test with a p-value of 0.55. It is however possible that the level of endogeneity also varies
over time, and that the Hausman statistic that only measures the average effect for static
estimators, averages out any local or temporary endogeneity over the entire sample. In
the absence of standard errors on the parameter estimates themselves, we cannot make
any such conclusions based on the value of the first stage residual parameter estimate
(τ̂ = 0.122), but Bhatt et al. (2020) find in their time-varying model that it is significant,
hence that endogeneity is in fact a concern. Comparing the IV-score and score paths, we
indeed find that they overlap for a large part of the quarters in the sample, but they do
differ substantially in a few instances.

Figure 4: Detail global financial crisis: data and filtered path of λt

Most notably, during the period 2008Q4-2009Q2 right after the start of the global
financial crisis with the bankruptcy of Lehman Brothers, the estimated effect by IV-score
deviates from the regular score filter (see Figure 4 for a zoomed-in version of this period).
In particular, we measure that the effect of income on consumption in that period turns
out to be larger, in fact almost twice as large, once we account for endogeneity. This
is broadly in line with the observation that during crises the sensitivity to income is
often underestimated, as was pointed out by Blanchard and Leigh (2013), who reveal that
fiscal multipliers were much higher than the initial forecasts during the great recession.
The results are also in accordance with observations by Eggertsson and Krugman (2012),
who suggest that the Ricardian equivalence broke down during this period, implying the
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reappearance of classic Keynesian type multipliers, in which current consumption depends
more strongly on current income.

Fulton Fish Market

We provide a second empirical application in which the bias in the score path is more
severe. We consider supply and demand models, that originally motivated Wright (1928)
to introduce instrumental variables. In any such supply/demand setting, average prices
and total quantities sold are recorded each period and one might be interested in the
evolution of price elasticity of demand over time. However, endogeneity is present in the
data, which stems from the fact that the observed prices and quantities are determined in
equilibrium. One such case of price elasticity of demand has been investigated by Graddy
(1995) and Angrist, Graddy, and Imbens (2000), at the New York Fulton fish market. In
order to provide a consistent estimate of the causal effect of log price on log quantity sold
of pounds of whiting fish, Angrist et al. (2000) use a weather variable as an instrument
that represents how stormy the weather conditions were at sea the day before. The validity
of this instrument follows from the fact that it shifts the supply curve without affecting
demand.

Applying our score driven filter to this data, using the storm variable as an instrument,
we arrive at the same result that the actual structural effect of price on quantity is double
the effect compared to least squares estimates. Our time varying estimated paths generated
by the score and IV-score filters, are similar in movements but fluctuate around these
different levels of the OLS and IV estimators. The 90% confidence band that captures
parameter uncertainty shows that the time-varying parameter is significant for most time
periods, and is rather wide relative to the path estimate as it inherits the standard error
of 0.46 of the static IV estimator.

7 Conclusion

In this paper we have introduced a score-driven filter for time-varying regression parame-
ters that can be applied when regressors are endogenous. We have established invertibility
of the filter, consistency of the MLE and proven filter convergence to the true unobserved
path. In a simulation study we have shown that the behavior of the regular score fil-
ter gives undesirable results while the IV-score, in the presence of suitable instruments,
uncovers the true underlying path of the time varying parameter. We have also shown
in simulations that for non-stationary parameter processes such as structural breaks and
random walks the filter shows appropriate behavior. Nevertheless, caution should be taken
with extrapolating this result, as non-stationary paths are not included in the theoretical
framework.
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Figure 5: Time-varying price elasticity of demand at Fulton fish market

In an application to excess sensitivity of consumption to income we show that even
when static OLS and IV estimates are not significantly different, our analogous time-
varying filters could still point out local differences that lead to valuable insights. While
the filters coincided for most periods, the few instances in which they did diverge suggest
that the level of endogeneity also varies over time, leaving the IV-score filter as the most
reliable of the two.

Further research will focus on strengthening the theory for inference for the static
parameters and the filtered path. With current assumptions, the derivation of asymptotic
normality of the MLE is complicated by the fact that the likelihood function does not have
guaranteed bounded moments. With asymptotic normality, a test for time variation and a
direct Hausman test for endogeneity could also be developed. The score-driven IV method
enriched with such hypothesis tests could significantly add by presenting new results in
many fields of applied research.
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Appendix A: Proofs

Proof of Lemma 1
This lemma is an application of Proposition 3.2 of Blasques, van Brummelen, Koopman,
and Lucas (2022), to which we refer for a proof.

Proof of Lemma 2
This lemma is an application of Proposition 3.3 of Blasques, van Brummelen, et al. (2022),
to which we refer for a proof.

Proof of Theorem 1
For notational simplicity, write ˆ̀

T2(θ, π, β̂1) := 1
T2

∑T2
t=1 `t(θ, π, β̂t(θ, π, β̂1)) and ˜̀

T2(θ, π) :=
1
T2

∑T2
t=1 `t(θ, π, β̃t(θ, π)). We will prove this Theorem in the following parts:

(P1) The model is identifiable: `∞(θ0, π0) > `∞(θ, π0) for any θ ∈ Θ,θ 6= θ0.

(P2) The function ˆ̀
T2(θ, π̂T1 , β̂1) with first stage estimator π̂T1 converges in probability

to ˜̀
T2(θ, π0) uniformly over Θ. That is,

‖ˆ̀T2(θ, π̂T1 , β̂1)− ˜̀
T2(θ, π0)‖Θ

p−→ 0 as T1, T2 →∞.

(P3) For any ε > 0, the following inequality holds a.s.

lim sup
T1,T2→∞

sup
θ∈Bc(θ0,ε)

ˆ̀
T2(θ, π̂T1 , β̂1) < `∞(θ0, π0),

where Bc(θ0, ε) = Θ \B(θ0, ε) with B(θ0, ε) = {θ ∈ Θ : ‖θ0 − θ‖ < ε}.

(P4) The result in (P3) implies consistency.

(P1): Existence of `∞(θ0, π0) is guaranteed by C2 and by C6 we have that either
`∞(θ, π0) ∈ R or `∞(θ, π0) = −∞. Then

`0(θ, π0)− `0(θ0, π0) = log pη

(
yt − β̃t(θ, π0)xt − τ(xt − π0zt);λ

)
− log pη (yt − βot xt − τ0(xt − π0zt);λ0)

22



where β̃t(θ, π0) is the limit sequence, and βot = β̃t(θ0, π0) is the true time-varying param-
eter due to correct specification of the filter.

`0(θ, π0)− `0(θ0, π0) = log

(
pη(yt − β̃txt − τ(xt − π0zt);λ)

pη(yt − βot xt − τ0(xt − π0zt);λ0)

)

≤
pη

(
yt − β̃txt − τ(xt − π0zt);λ

)
pη(yt − βot xt − τ0(xt − π0zt);λ0)

− 1

The case of an equal sign here is ruled out, since the densities are not the same for any
θ 6= θ0. And, since pη(yt−βot xt− τ0(xt−π0zt);λ0) is the true conditional density we have

E[E
[
`0(θ, π0)− `0(θ0, π0)|Y t]

]
< E

E
 pη

(
yt − β̃txt − τ(xt − π0zt);λ

)
pη(yt − βot xt − τ0(xt − π0zt);λ0)

∣∣∣∣∣∣Y t

− 1 = 0

As a result,

`∞(θ, π0)− `∞(θ0, π0) = E[E
[
`0(θ, π0)− `0(θ0, π0)|Y t]

]
< 0 ∀θ 6= θ0.

(P2) ‖ˆ̀T2(θ, π̂T1 , β̂1)− ˜̀
T2(θ, π0)‖Θ

p−→ 0 as T1, T2 →∞.
Since π might affect the likelihood function directly as well as indirectly through the filter,
we denote this explicitly by allowing for different values of π in `t(θ, π

∗, βt(θ, π
∗∗)), to

isolate each effect. We have

‖ˆ̀T2(θ, π̂T1 , β̂1)− ˜̀
T2(θ, π0)‖Θ

= sup
θ∈Θ

∣∣∣∣∣ 1

T2

∑
t=1

`t(θ, π̂T1 , β̂t(θ, π̂T1 , β̂1))− 1

T2

∑
t=1

`t(θ, π0, β̃t(θ, π0))

∣∣∣∣∣
≤ sup

θ∈Θ

1

T2

∑
t=1

∣∣∣`t(θ, π̂T1 , β̂t(θ, π̂T1 , β̂1))− `t(θ, π0, β̃t(θ, π0))
∣∣∣

≤ 1

T2

∑
t=1

∥∥∥`t(θ, π̂T1 , β̂t(θ, π̂T1 , β̂1))− `t(θ, π0, β̃t(θ, π0))
∥∥∥

Θ
.

We will show that each summand converges in probability to zero, so that by the Stolz-
Cesaro theorem the sample average does too. We can write

‖`t(θ, π̂T1 , β̂t(θ, π̂T1 , β̂1))− `t(θ, π0, β̃t(θ, π0))‖Θ
≤ ‖`t(θ, π̂T1 , β̂t(θ, π̂T1 , β̂1))− `t(θ, π̂T1 , β̃t(θ, π̂T1))‖Θ
+ ‖`t(θ, π̂T1 , β̃t(θ, π̂T1))− `t(θ, π̂T1 , β̃t(θ, π0))‖Θ
+ ‖`t(θ, π̂T1 , β̃t(θ, π0)− `t(θ, π0, β̃t(θ, π0))‖Θ
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Applying a Mean Value Theorem (MVT) to each of these terms and further decomposing
it we get by (C4) and (C7)

≤

∥∥∥∥∥ ∂`t(θ, π̂T1 , β)

∂β

∣∣∣∣
β=β∗t (θ,π̂T1

,β̂1)

∥∥∥∥∥
Θ

‖β̂t(θ, π̂T1 , β̂1)− β̃t(θ, π̂T1)‖Θ︸ ︷︷ ︸
e.a.s.−−−→ 0 as t→∞

+

∥∥∥∥∥ ∂`t(θ, π̂T1 , β)

∂β

∣∣∣∣
β=β̃∗t (θ,π)

∥∥∥∥∥
Θ

∥∥∥∥∥∥ ∂β̃t(θ, π)

∂π

∣∣∣∣∣
π=π∗T1

∥∥∥∥∥∥
Θ

|π̂T1 − π0|︸ ︷︷ ︸
p−→ 0 as T1→∞

+

∥∥∥∥∥∥ ∂`t(θ, π, β̃t(θ, π0))

∂π

∣∣∣∣∣
π=π∗T1

∥∥∥∥∥∥
Θ

|π̂T1 − π0|︸ ︷︷ ︸
p−→ 0 as T1→∞

where

• β∗t (θ, π̂T1 , β̂1) is a point between β̂t(θ, π̂T1 , β̂1) and β̃t(θ, π̂T1)

• β̃∗t (θ, π) is a point between β̃t(θ, π̂T1) and β̃t(θ, π0)

• π∗T1
is a point between π̂T1 and π0.

The derivatives in lines 2 and 3 are bounded in probability, as (C5) assumes these to
be SE and the derivative process of stationary β̃t is SE as shown in the technical ap-
pendix of Blasques, Koopman, and Lucas (2014), as it yields the same contraction condi-
tion. Furthermore, the derivative in line 1 is asymptotically bounded in probability, since
‖β∗t (θ, π̂T1 , β̂1)− β̃t(θ, π̂T1)‖Θ

e.a.s.−−−→ 0, meaning there exists a value N ∈ N, such that for
all t > N P(‖β∗t (θ, π̂T1 , β̂1)− β̃t(θ, π̂T1)‖Θ < 1) = 1. Therefore,∥∥∥∥∥ ∂`t(θ, π̂T1 , β)

∂β

∣∣∣∣
β=β∗t (θ,π̂T1

,β̂1)

∥∥∥∥∥
Θ

≤ sup
θ, δ∈[−1,1]

∣∣∣∣∣ ∂`t(θ, π̂T1 , β)

∂β

∣∣∣∣
β=β̃t(θ,π̂T1

)+δ

∣∣∣∣∣ , ∀ t > N.

Since the latter is SE, by continuity of the supremum operator and by Proposition 4.3 in
Krengel (1985), we have that the derivative is asympotically bounded in probability, i.e.

lim
t,M→∞

P

(∥∥∥∥∥ ∂`t(θ, π̂T1 , β)

∂β

∣∣∣∣
β=β∗t (θ,π̂T1

,β̂1)

∥∥∥∥∥
Θ

> M

)

≤ lim
t,M→∞

P

(
sup

θ, δ∈[−1,1]

∣∣∣∣∣ ∂`t(θ, π̂T1 , β)

∂β

∣∣∣∣
β=β̃t(θ,π̂T1

)+δ

∣∣∣∣∣ > M

)
= 0.

(P3): We will show that (P3) holds for ˜̀
T2(θ, π0) since by (P2) ˆ̀

T2(θ, π̂T1 , β̂1) is asymp-
totically equivalent to ˜̀

T2(θ, π0).
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Fix a θ∗. Then for a decreasing sequence {εi}i∈N s.t. limi→∞ εi = 0, the sequence
{supθ∈B(θ∗, εi) `0(θ, π0)}i∈N is non-increasing and greater than `0(θ∗, π0) for every i. Con-
sidering this, and the fact that limi→∞ supθ∈B(θ∗, εi) `0(θ, π0) = `0(θ∗, π0) by continuity, we
conclude that supθ∈B(θ∗, εi) `0(θ, π0) ↓ `0(θ∗, π0). This together with E supθ∈Θ `0(θ, π0) <
∞ which is implied by (C6), we can apply the Monotone Convergence Theorem to con-
clude that

lim
i→∞

E sup
θ∈B(θ∗, εi)

`0(θ, π0) = `∞(θ∗, π0).

By (P1) we have that `∞(θ0, π0) > `∞(θ∗, π0) so that for all θ∗ 6= θ0 there exists a εθ∗ > 0
such that

E sup
θ∈B(θ∗, εθ∗ )

`0(θ, π0) < `∞(θ0, π0).

The set Bc(θ0, ε) is compact and is covered by the balls {B(θ, εθ) : θ ∈ Bc(θ0, ε)}. Let
B(θ1, ε1), . . . , B(θp, εp) be a finite subcover with supk=1,...,p εk < ε. Then, for any T ∈ N,
we have

sup
θ∈Bc(θ0,ε)

˜̀
T (θ, π0) ≤

p∨
k=1

1

T

T∑
t=1

sup
θ∈B(θk,εk)

˜̀
t(θ, π0).

Taking limits on both sides of the equation gives

lim sup
T2→∞

sup
θ∈Bc(θ0,ε)

˜̀
T2(θ, π0) ≤

p∨
k=1

E sup
θ∈B(θk,εk)

`0(θ, π0) < `∞(θ0, π0).

(P4): If there exists an ε > 0 such that |θ̂T2(π̂T1 , β̂1)− θ0| > ε, that implies

sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1) ≥ ˆ̀

T2

(
θ̂T2(π̂T1 , β̂1), π̂T1 , β̂1

)
≥ ˆ̀

T2(θ0, π̂T1 , β̂1)

by definition of the two-step MLE. Therefore,

lim
T1,T2→∞

P

(
|θ̂T2(π̂T1 , β̂1)− θ0| > ε

)
≤ lim

T1,T2→∞
P

 sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1)− ˆ̀

T2(θ0, π̂T1 , β̂1) ≥ 0

 .
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Furthermore,

0 ≤ sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1)− ˆ̀

T2(θ0, π̂T1 , β̂1)

≤ sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1)− ˜̀

T2(θ0, π0) + ˜̀
T2(θ0, π0)− ˆ̀

T2(θ0, π̂T1 , β̂1)

≤ sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1)− ˜̀

T2(θ0, π0) + |˜̀T2(θ0, π0)− ˆ̀
T2(θ0, π̂T1 , β̂1)|

≤ sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1)− ˜̀

T2(θ0, π0) + ‖˜̀T2(θ, π0)− ˆ̀
T2(θ, π̂T1 , β̂1)‖Θ

= sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1)− ˜̀

T2(θ0, π0) + op(1)

by (P2). Then,

lim
T1,T2→∞

P

 sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1)− ˆ̀

T2(θ0, π̂T1 , β̂1) ≥ 0


≤ lim

T1,T2→∞
P

 sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1)− ˜̀

T2(θ0, π0) + op(1) ≥ 0

 (ineq above)

≤ lim sup
T1,T2→∞

P

 sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1)− ˜̀

T2(θ0, π0) + op(1) ≥ 0

 (lim ≤ limsup)

≤ P

 lim sup
T1,T2→∞

 sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1)− ˜̀

T2(θ0, π0) + op(1)

 ≥ 0

 (reverse Fatou’s lemma)

≤ P

 lim sup
T1,T2→∞

sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1) ≥ lim sup

T1,T2→∞
˜̀
T2(θ0, π0)− lim sup

T1,T2→∞
op(1)

 (see note)

= P

 lim sup
T1,T2→∞

sup
θ∈Bcεθ0

ˆ̀
T2(θ, π̂T1 , β̂1) ≥ `∞(θ0, π0)

 = 0 (P3)

Note: The rule lim sup
T→∞

(aT + bT ) ≤ lim sup
T→∞

aT + lim sup
T→∞

bT holds for bounded sequences,

which is guaranteed by (P3) and (C2).

Proof of Corollary 3
In order to show consistency of the MLE for the Gaussian IV-score model, we show that
the assumptions imply each of the conditions C1-C7 from Theorem 1. Let K = 1

2 log(2Π)
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where Π is used here to denote the number pi (3.14..) that appears in the Gaussian density.
Then we have the following expressions for the likelihood contributions and the IV-score
filter

`t(θ, π, β̂t(θ, π, β̂1)) = −K − 1

2
log(σ2)− 1

2
σ−2(yt − β̂t(θ, π, β̂1)xt − τ(xt − πzt))2

β̂t+1(θ, π, β̂1) = ω + ασ−2xt(yt − β̂t(θ, π, β̂1)xt − τ(xt − πzt)) + γβ̂t(θ, π, β̂1),

where β̂1(θ, π, β̂1) = β̂1. Furthermore, we define

`0(θ, π) = −K − 1

2
log(σ2)− 1

2
σ−2(yt − β̃t(θ, π)xt − τ(xt − πzt))2, (16)

where β̃t(θ, π) is the stationary limit of β̂t(θ, π, β̂1).

(C1) The DGP admits a stationary solution if βot , xt, zt, ηt are stationary sequences by
Proposition 4.3 in Krengel (1985). Therefore we need to show that β0

t = β̃t(θ0, π0) admits
a stationary solution, since the rest is assumed to be stationary. The true parameter
follows the process β0

t+1 = ω0 + α0σ
2
0xtηt + γ0β

0
t which is SE whenever E|γ0| < 1.

(C2) E|`0(θ0, π0)| <∞ holds for the Gaussian density.

E|`0(θ0, π0)| = E|−K − 1

2
log(σ2

0)− 1

2
σ−2

0 (yt − β0
t xt − τ0ut)

2|

= E|−K − 1

2
log(σ2

0)− 1

2
σ−2

0 η2
t | <∞.

(C3) We have to show that `0(θ0, π0) = `0(θ, π0) if and only if θ = θ0. Since the ”if”
direction is obvious, we focus on the ”only if” component. Denote the Gaussian density
function by f(y|µ, σ) = 1

σ
√

2π
exp(−1

2(y−µσ )2). Note that f(y|µ0, σ0) = f(y|µ, σ) for any y

if and only if µ = µ0 and σ = σ0. Therefore, for our Gaussian likelihood in equation (16)
with σ = σ0, we have µ = µ0 if and only if

β̃t(θ0, π0)xt + τ0(xt − π0zt) = β̃t(θ, π0)xt + τ(xt − π0zt).

Using the first stage equation xt = π0zt + ut we can rearrange this to

0 = π0(β̃t(θ0, π0)− β̃t(θ, π0))zt + (β̃t(θ0, π0)− β̃t(θ, π0) + (τ0 − τ))ut.

As ut ⊥ zt this can only hold for any zt, ut if the terms premultiplying zt and ut are
both zero. Solving the system of these two equations we get

π0(τ0 − τ) = 0,

with solutions i) τ = τ0 and ii)π0 = 0 and possibly τ 6= τ0 (which means also
β̃t(θ0, π0) − β̃t(θ, π0) = τ − τ0 6= 0). It remains to verify what these solutions imply
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for the rest of the elements in θ. To investigate both solutions simultaneously, define
κ := β̃t(θ0, π0) − β̃t(θ, π0), so that for solution i)κ = 0 and ii)κ = τ − τ0 6= 0 for any t.
Then for the filter at time t+ 1,

κ = β̃t+1(θ0, π0)− β̃t+1(θ, π0)

κ = (ω0 + α0σ
−2
0 xtηt + γ0β̃t(θ0, π0)

−(ω + ασ−2
0 xt (yt − β̃t(θ, π0)xt − τ(xt − π0zt))︸ ︷︷ ︸

η̃t

+γβ̃t(θ, π0)

κ = (ω0 − ω) +
(α0ηt − αη̃t)

σ2
0

xt + (γ0β̃t(θ0, π0)− γβ̃t(θ, π0))

0 = (ω0 − ω) +
(α0ηt − αη̃t)

σ2
0

xt + (γ0 − γ)β̃t(θ0, π0) + (γ − 1)κ.

Since the filter depends on the past, xt and β̃t(θ0, π0) are independent, meaning that
all premultiplying terms should be zero for this to hold. This gives rise to the following
set of equations:

(ω0 − ω) + (γ − 1)κ = 0

α0ηt − αη̃t = 0

γ0 − γ = 0.

Since we have the solution π0(τ0 − τ) = 0, the second equation gives us

0 = α0ηt − αη̃t = α0ηt − α(yt − β̃t(θ, π0)xt − τ(xt − π0zt))

= (α0 − α)ηt − α
[(
β̃t(θ0, π0)− β̃t(θ, π0) + τ0 − τ

)
xt − (τ0π0 − τπ0)zt

]
= (α0 − α)ηt − α

[(
β̃t(θ0, π0)− β̃t(θ, π0) + τ0 − τ

)
π0 − (τ0π0 − τπ0)

]
zt

− α
(
β̃t(θ0, π0)− β̃t(θ, π0) + τ0 − τ

)
ut

= (α0 − α)ηt =⇒ α0 − α = 0.

Then we have (including the previously established values)

σ = σ0

γ = γ0

α = α0

(ω0 − ω) + (γ0 − 1)(τ − τ0) = 0

π0(τ − τ0) = 0.

Since π0 6= 0, we finally obtain that τ = τ0, ω = ω0 meaning that θ = θ0.
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(C4) This is a direct result of Corollary 1.

(C5) Writing out each derivative we obtain

∂`t(θ, π̂T1 , β̃
∗
t (θ, π))

∂β
=
xt(yt − β̃∗t (θ, π)xt − τ(xt − π̂T1zt))

σ2

∂`t(θ, π
∗
T1
, β̃t(θ, π0))

∂π
= −

τzt(yt − β̃t(θ, π0)xt − τ(xt − π∗T1
zt))

σ2
,

which are continuous functions of SE sequences.

(C6) Implied by Gaussian density and boundedness of the parameter space.

`0(θ, π0) = −K − 1

2
log(σ)− 1

2
σ−2(yt − β̃t(θ, π0)xt − τ(xt − π0zt))

2

≤ −K − 1

2
log(σ) a.s.

Then

sup
θ∈Θ

`0(θ, π0) ≤ −K − 1

2
sup
θ∈Θ

log σ <∞,

with probability 1 by the compactness of Θ. This also implies E‖`0(θ, π0) ∨ c‖Θ <∞.

(C7) Given the DGP with Gaussian i.i.d. errors, the first stage OLS estimator is
consistent.

Proof of Proposition 1
We assume correct specification, which implies that βot = β̃t(θ0, π0). To make dependencies
explicit, denote the whole updating equation by βt+1(θ, π) = φ(βt(θ, π), Yt, π;θ)). Finally,
let Bε(θ) = {θ̃ ∈ Θ : ‖θ − θ̃‖ ≤ ε} be a compact neighborhood of θ ∈ Θ with radius ε for
some ε > 0. Then,

|β̂t(θ̂T2 , π̂T1 , β̂1)− βot | = |β̂t(θ̂T2 , π̂T1 , β̂1)− β̃t(θ0, π0)|
≤ |β̂t(θ̂T2 , π̂T1 , β̂1)− β̃t(θ̂T2 , π̂T1)|+ |β̃t(θ̂T2 , π̂T1)− β̃t(θ̂T2 , π0)|+ |β̃t(θ̂T2 , π0)− β̃t(θ0, π0)|
≤ ‖β̂t(θ, π̂T1 , β̂1)− β̃t(θ, π̂T1)‖Θ + ‖β̃t(θ, π̂T1)− β̃t(θ, π0)‖Θ + |β̃t(θ̂T2 , π0)− β̃t(θ0, π0)|

The first term vanishes e.a.s. as t→∞ by an application of Lemma 1. The second term
can be shown to vanish a.s. by an application of the MVT, similar to the proof of (P2)
in Theorem 1.

‖β̃t(θ, π̂T1)− β̃t(θ, π0)‖Θ ≤

∥∥∥∥∥∂β̃t(θ, π∗T1
)

∂π

∥∥∥∥∥
Θ︸ ︷︷ ︸

SE

|π̂T1 − π0|︸ ︷︷ ︸
p−→0
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where π∗T1
is a point between π̂T1 and π0, and the derivative process of stationary β̃t is

SE (hence, bounded in probability) as shown in the technical appendix of Blasques et al.
(2014). A similar argument holds for the third term, where we expand around θ∗T2

, a point

in between θ̂T2 and θ0.

|β̃t(θ̂T2 , π0)− β̃t(θ0, π0)| ≤

∥∥∥∥∥∂β̃t(θ∗T2
, π)

∂θ

∥∥∥∥∥
Θ︸ ︷︷ ︸

SE

|θ̂T2 − θ0|︸ ︷︷ ︸
p−→0

p−→ 0.

Appendix B: Additional Simulation Results

Figure 6: βt with a midway break (DGP 2).

Figure 7: βt following a random walk (DGP 3).
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Figure 8: Filtering with an endogenous instrument (DGP 4).

Figure 9: Filtering with large error variance (DGP 5).

Figure 10: Filtering with outliers (DGP 6).
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